Package: Surrogate 3.3.0.9000

Wim Van Der Elst

Surrogate: Evaluation of Surrogate Endpoints in Clinical Trials

In a clinical trial, it frequently occurs that the most credible outcome to evaluate the effectiveness of a new therapy (the true endpoint) is difficult to measure. In such a situation, it can be an effective strategy to replace the true endpoint by a (bio)marker that is easier to measure and that allows for a prediction of the treatment effect on the true endpoint (a surrogate endpoint). The package 'Surrogate' allows for an evaluation of the appropriateness of a candidate surrogate endpoint based on the meta-analytic, information-theoretic, and causal-inference frameworks. Part of this software has been developed using funding provided from the European Union's Seventh Framework Programme for research, technological development and demonstration (Grant Agreement no 602552), the Special Research Fund (BOF) of Hasselt University (BOF-number: BOF2OCPO3), GlaxoSmithKline Biologicals, Baekeland Mandaat (HBC.2022.0145), and Johnson & Johnson Innovative Medicine.

Authors:Wim Van Der Elst [cre, aut], Florian Stijven [aut], Fenny Ong [aut], Dries De Witte [aut], Paul Meyvisch [aut], Alvaro Poveda [aut], Ariel Alonso [aut], Hannah Ensor [aut], Christoper Weir [aut], Geert Molenberghs [aut]

Surrogate_3.3.0.9000.tar.gz
Surrogate_3.3.0.9000.zip(r-4.5)Surrogate_3.3.0.9000.zip(r-4.4)
Surrogate_3.3.0.9000.tgz(r-4.4-any)
Surrogate_3.3.0.9000.tar.gz(r-4.5-noble)Surrogate_3.3.0.9000.tar.gz(r-4.4-noble)
Surrogate_3.3.0.9000.tgz(r-4.4-emscripten)
Surrogate.pdf |Surrogate.html
Surrogate/json (API)
NEWS

# Install 'Surrogate' in R:
install.packages('Surrogate', repos = c('https://florianstijven.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/florianstijven/surrogate-development/issues

Datasets:
  • ARMD - Data of the Age-Related Macular Degeneration Study
  • ARMD.MultS - Data of the Age-Related Macular Degeneration Study with multiple candidate surrogates
  • Ovarian - The Ovarian dataset
  • PANSS - PANSS subscales and total score based on the data of five clinical trials in schizophrenia
  • Schizo - Data of five clinical trials in schizophrenia
  • Schizo_Bin - Data of a clinical trial in Schizophrenia (with binary outcomes).
  • Schizo_BinCont - Data of a clinical trial in schizophrenia
  • Schizo_PANSS - Longitudinal PANSS data of five clinical trials in schizophrenia
  • colorectal - The Colorectal dataset with a binary surrogate.
  • colorectal4 - The Colorectal dataset with an ordinal surrogate.
  • prostate - The prostate dataset with a continuous surrogate.

On CRAN:

5.98 score 1 stars 132 scripts 1.0k downloads 5 mentions 141 exports 168 dependencies

Last updated 4 months agofrom:89c680b519. Checks:OK: 1 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-winNOTENov 06 2024
R-4.5-linuxNOTENov 06 2024
R-4.4-winNOTENov 06 2024
R-4.4-macNOTENov 06 2024

Exports:AA.MultSBifixedContContBimixedCbCContContBimixedContContBootstrap.MEP.BinBinCausalDiagramBinBinCausalDiagramContContcomb27.BinBinECTFano.BinBinFederatedApproachStage1FederatedApproachStage2fit_copula_model_BinContfit_model_SurvSurvFixedBinBinITFixedBinContITFixedContBinITFixedContContITFixedDiscrDiscrITICA.BinBinICA.BinBin.CounterAssumICA.BinBin.Grid.FullICA.BinBin.Grid.SampleICA.BinBin.Grid.Sample.UncertICA.BinContICA.BinCont.BSICA.ContContICA.ContCont.MultSICA.ContCont.MultS_altICA.ContCont.MultS.MPCICA.ContCont.MultS.PCICA.Sample.ContContISTE.ContContLongToWidemarginal_gof_scr_S_plotmarginal_gof_scr_T_plotMarginalProbsMaxEntContContMaxEntICABinBinMaxEntSPFBinBinmean_S_before_T_plot_scrMetaAnalyticSurvBinMetaAnalyticSurvCatMetaAnalyticSurvContMetaAnalyticSurvSurvMICA.ContContMICA.Sample.ContContMinSurrContContMixedContContITmodel_fit_measuresMufixedContCont.MultSMumixedContCont.MultSplot.BifixedContContplot.BimixedContContplot.comb27.BinBinplot.Fano.BinBinplot.FixedBinBinITplot.FixedBinContITplot.FixedContBinITplot.FixedContContITplot.FixedDiscrDiscrITplot.ICA.BinBinplot.ICA.BinContplot.ICA.ContContplot.ICA.ContCont.MultSplot.ISTE.ContContplot.MaxEntContContplot.MaxEntICA.BinBinplot.MaxEntSPF.BinBinplot.MICA.ContContplot.MinSurrContContplot.MixedContContITplot.PPE.BinBinplot.Single.Trial.RE.AAplot.SPF.BinBinplot.SPF.BinContplot.SurvSurvplot.TrialLevelITplot.TrialLevelMAplot.TwoStageSurvSurvplot.UnifixedContContplot.UnimixedContContPos.Def.MatricesPPE.BinBinPred.TrialT.ContContPrenticeprob_dying_without_progression_plotPROC.BinBinRandVecRestrictions.BinBinsensitivity_analysis_BinCont_copulasensitivity_analysis_SurvSurv_copulasensitivity_intervals_DvineSim.Data.CounterfactualsSim.Data.CounterfactualsBinBinSim.Data.MTSSim.Data.STSSim.Data.STSBinBinSingle.Trial.RE.AASPF.BinBinSPF.BinContsummary.AA.MultSsummary.BifixedContContsummary.BimixedCbCContContsummary.BimixedContContsummary.Bootstrap.MEP.BinBinsummary.ECTsummary.Fano.BinBinsummary.FixedBinContITsummary.FixedContBinITsummary.FixedContContITsummary.FixedDiscrDiscrITsummary.ICA.BinBinsummary.ICA.BinContsummary.ICA.ContContsummary.ICA.ContCont.MultSsummary.ISTE.ContContsummary.MaxEntContContsummary.MaxEntICA.BinBinsummary.MaxEntSPF.BinBinsummary.MICA.ContContsummary.MinSurrContContsummary.PPE.BinBinsummary.PredTrialTContContsummary.Prenticesummary.Single.Trial.RE.AAsummary.SPF.BinBinsummary.SPF.BinContsummary.SurvSurvsummary.TrialLevelITsummary.TrialLevelMAsummary.TwoStageSurvSurvsummary.UnifixedContContsummary.UnimixedContContSurvSurvTest.MonoTrialLevelITTrialLevelMATwoStageSurvSurvUnifixedContContUnimixedContCont

Dependencies:abindarmassertthatbackportsbase64encbbmlebdsmatrixBHbitbit64bootbroombslibcachemcheckmateclicliprclustercodacodetoolscolorspacecpp11crayondata.tabledeldirdeSolvedigestdplyrevaluateexpmextraDistrfansifarverfastGHQuadfastmapflexsurvFNNfontawesomeforcatsforeachforeignFormulaformula.toolsfsgenericsggplot2glmnetgluegridExtragtablehavenhighrHmischmshtmlTablehtmltoolshtmlwidgetsinterpisobanditeratorsjomojpegjquerylibjsonlitekde1dkernlabKernSmoothknitrkslabelinglatticelatticeExtralavaanlifecyclelme4logistfmagrittrMASSMatrixMatrixModelsmaxLikMBESSmclustmemoisemgcvmimicemimeminqamiscToolsmitmlmnormtmsmmstatemuhazmultcompmulticoolmunsellmvtnormnlmenloptrnnetnumDerivOpenMxoperator.toolsoptimxordinalpanpbapplypbivnormpillarpkgconfigpngpolsplinepracmaprettyunitsprogresspurrrquadprogquantregR6randtoolboxrappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelRcppThreadreadrrlangrmarkdownrmsrngWELLrpartrpfrstpm2rstudioapirvinecopulibsandwichsassscalessemsemToolsshapeSparseMStanHeadersstatmodstringistringrsurvivalTH.datatibbletidyrtidyselecttinytextzdbucminfutf8vctrsviridisviridisLitevroomwdmwithrxfunyamlzoo

Readme and manuals

Help Manual

Help pageTopics
Compute the multiple-surrogate adjusted associationAA.MultS
Data of the Age-Related Macular Degeneration StudyARMD
Data of the Age-Related Macular Degeneration Study with multiple candidate surrogatesARMD.MultS
Fits a bivariate fixed-effects model to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case)BifixedContCont
Fits a bivariate mixed-effects model using the cluster-by-cluster (CbC) estimator to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case)BimixedCbCContCont
Fits a bivariate mixed-effects model to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case)BimixedContCont
Loglikelihood function for binary-continuous copula modelbinary_continuous_loglik
Bootstrap 95% CI around the maximum-entropy ICA and SPF (surrogate predictive function)Bootstrap.MEP.BinBin
Draws a causal diagram depicting the median informational coefficients of correlation (or odds ratios) between the counterfactuals for a specified range of values of the ICA in the binary-binary setting.CausalDiagramBinBin
Draws a causal diagram depicting the median correlations between the counterfactuals for a specified range of values of ICA or MICA in the continuous-continuous settingCausalDiagramContCont
Function factory for distribution functionscdf_fun
Loglikelihood on the Copula Scale for the Clayton Copulaclayton_loglik_copula_scale
The Colorectal dataset with a binary surrogate.colorectal
The Colorectal dataset with an ordinal surrogate.colorectal4
Assesses the surrogate predictive value of each of the 27 prediction functions in the setting where both S and T are binary endpointscomb27.BinBin
Compute Individual Causal Association for a given D-vine copula model in the Binary-Continuous Settingcompute_ICA_BinCont
Compute Individual Causal Association for a given D-vine copula model in the Survival-Survival Settingcompute_ICA_SurvSurv
Variance of log-mutual information based on the delta methoddelta_method_log_mutinfo
Confidence interval for the ICA given the unidentifiable parametersDvine_ICA_confint
Apply the Entropy Concentration TheoremECT
Estimate ICA in Binary-Continuous Settingestimate_ICA_BinCont
Estimate the Mutual Information in the Survival-Survival Settingestimate_mutual_information_SurvSurv
Evaluate the possibility of finding a good surrogate in the setting where both S and T are binary endpointsFano.BinBin
Fits the first stage model in the two-stage federated data analysis approach.FederatedApproachStage1
Fits the second stage model in the two-stage federated data analysis approach.FederatedApproachStage2
Fit copula model for binary true endpoint and continuous surrogate endpointfit_copula_model_BinCont
Fit binary-continuous copula submodelfit_copula_submodel_BinCont
Fit Survival-Survival modelfit_model_SurvSurv
Fits (univariate) fixed-effect models to assess surrogacy in the binary-binary case based on the Information-Theoretic frameworkFixedBinBinIT
Fits (univariate) fixed-effect models to assess surrogacy in the case where the true endpoint is binary and the surrogate endpoint is continuous (based on the Information-Theoretic framework)FixedBinContIT
Fits (univariate) fixed-effect models to assess surrogacy in the case where the true endpoint is continuous and the surrogate endpoint is binary (based on the Information-Theoretic framework)FixedContBinIT
Fits (univariate) fixed-effect models to assess surrogacy in the continuous-continuous case based on the Information-Theoretic frameworkFixedContContIT
Investigates surrogacy for binary or ordinal outcomes using the Information Theoretic frameworkFixedDiscrDiscrIT
Loglikelihood on the Copula Scale for the Frank Copulafrank_loglik_copula_scale
Loglikelihood on the Copula Scale for the Gaussian Copulagaussian_loglik_copula_scale
Loglikelihood on the Copula Scale for the Gumbel Copulagumbel_loglik_copula_scale
Constructor for the function that returns that ICA as a function of the identifiable parametersICA_given_model_constructor
Assess surrogacy in the causal-inference single-trial setting in the binary-binary caseICA.BinBin
ICA (binary-binary setting) that is obtaied when the counterfactual correlations are assumed to fall within some prespecified ranges.ICA.BinBin.CounterAssum
Assess surrogacy in the causal-inference single-trial setting in the binary-binary case when monotonicity for S and T is assumed using the full grid-based approachICA.BinBin.Grid.Full
Assess surrogacy in the causal-inference single-trial setting in the binary-binary case when monotonicity for S and T is assumed using the grid-based sample approachICA.BinBin.Grid.Sample
Assess surrogacy in the causal-inference single-trial setting in the binary-binary case when monotonicity for S and T is assumed using the grid-based sample approach, accounting for sampling variability in the marginal pi.ICA.BinBin.Grid.Sample.Uncert
Assess surrogacy in the causal-inference single-trial setting in the binary-continuous caseICA.BinCont
Assess surrogacy in the causal-inference single-trial setting in the binary-continuous case with an additional bootstrap procedure before the assessmentICA.BinCont.BS
Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) in the Continuous-continuous caseICA.ContCont
Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) using a continuous univariate T and multiple continuous SICA.ContCont.MultS
Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) using a continuous univariate T and multiple continuous S, alternative approachICA.ContCont.MultS_alt
Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) using a continuous univariate T and multiple continuous S, by simulating correlation matrices using a modified algorithm based on partial correlationsICA.ContCont.MultS.MPC
Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) using a continuous univariate T and multiple continuous S, by simulating correlation matrices using an algorithm based on partial correlationsICA.ContCont.MultS.PC
Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) in the Continuous-continuous case using the grid-based sample approachICA.Sample.ContCont
Individual-level surrogate threshold effect for continuous normally distributed surrogate and true endpoints.ISTE.ContCont
Computes loglikelihood for a given copula modellog_likelihood_copula_model
Loglikelihood on the Copula Scaleloglik_copula_scale
Reshapes a dataset from the 'long' format (i.e., multiple lines per patient) into the 'wide' format (i.e., one line per patient)LongToWide
Fit marginal distributionmarginal_distribution
Marginal survival function goodness of fitmarginal_gof_plots_scr
Goodness-of-fit plot for the marginal survival functionsmarginal_gof_scr_S_plot marginal_gof_scr_T_plot
Computes marginal probabilities for a dataset where the surrogate and true endpoints are binaryMarginalProbs
Use the maximum-entropy approach to compute ICA in the continuous-continuous sinlge-trial settingMaxEntContCont
Use the maximum-entropy approach to compute ICA in the binary-binary settingMaxEntICABinBin
Use the maximum-entropy approach to compute SPF (surrogate predictive function) in the binary-binary settingMaxEntSPFBinBin
Goodness of fit plot for the fitted copulamean_S_before_T_plot_scr prob_dying_without_progression_plot
Compute surrogacy measures for a binary surrogate and a time-to-event true endpoint in the meta-analytic multiple-trial setting.MetaAnalyticSurvBin
Compute surrogacy measures for a categorical (ordinal) surrogate and a time-to-event true endpoint in the meta-analytic multiple-trial setting.MetaAnalyticSurvCat
Compute surrogacy measures for a continuous (normally-distributed) surrogate and a time-to-event true endpoint in the meta-analytic multiple-trial setting.MetaAnalyticSurvCont
Compute surrogacy measures for a time-to-event surrogate and a time-to-event true endpoint in the meta-analytic multiple-trial setting.MetaAnalyticSurvSurv
Assess surrogacy in the causal-inference multiple-trial setting (Meta-analytic Individual Causal Association; MICA) in the continuous-continuous caseMICA.ContCont
Assess surrogacy in the causal-inference multiple-trial setting (Meta-analytic Individual Causal Association; MICA) in the continuous-continuous case using the grid-based sample approachMICA.Sample.ContCont
Examine the plausibility of finding a good surrogate endpoint in the Continuous-continuous caseMinSurrContCont
Fits (univariate) mixed-effect models to assess surrogacy in the continuous-continuous case based on the Information-Theoretic frameworkMixedContContIT
Goodness of fit information for survival-survival modelmodel_fit_measures
Fits a multivariate fixed-effects model to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case with multiple surrogates)MufixedContCont.MultS
Fits a multivariate mixed-effects model to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case with multiple surrogates)MumixedContCont.MultS
Constructor for vine copula modelnew_vine_copula_ss_fit
The Ovarian datasetOvarian
PANSS subscales and total score based on the data of five clinical trials in schizophreniaPANSS
Function factory for density functionspdf_fun
Plots the (Meta-Analytic) Individual Causal Association and related metrics when S and T are binary outcomesplot Causal-Inference BinBin plot.ICA.BinBin
Plots the (Meta-Analytic) Individual Causal Association when S and T are continuous outcomesplot Causal-Inference ContCont plot.ICA.ContCont plot.MICA.ContCont
Provides plots of trial-level surrogacy in the Information-Theoretic frameworkplot FixedDiscrDiscrIT plot.FixedDiscrDiscrIT
Plots the Individual Causal Association in the setting where there are multiple continuous S and a continuous Tplot.ICA.ContCont.MultS plot.ICA.ContCont.MultS_alt
Provides plots of trial- and individual-level surrogacy in the Information-Theoretic frameworkplot Information-Theoretic plot.FixedContContIT plot.MixedContContIT
Provides plots of trial- and individual-level surrogacy in the Information-Theoretic framework when both S and T are binary, or when S is binary and T is continuous (or vice versa)plot Information-Theoretic BinCombn plot.FixedBinBinIT plot.FixedBinContIT plot.FixedContBinIT
Plots the individual-level surrogate threshold effect (STE) values and related metricsplot ISTE.ContCont plot.ISTE.ContCont
Plots the sensitivity-based and maximum entropy based Individual Causal Association when S and T are continuous outcomes in the single-trial settingplot MaxEnt ContCont plot.MaxEntContCont
Plots the sensitivity-based and maximum entropy based Individual Causal Association when S and T are binary outcomesplot MaxEntICA BinBin plot.MaxEntICA.BinBin
Plots the sensitivity-based and maximum entropy based surrogate predictive function (SPF) when S and T are binary outcomes.plot MaxEntSPF BinBin plot.MaxEntSPF.BinBin
Provides plots of trial- and individual-level surrogacy in the meta-analytic frameworkplot Meta-Analytic plot.BifixedContCont plot.BimixedContCont plot.UnifixedContCont plot.UnimixedContCont
Graphically illustrates the theoretical plausibility of finding a good surrogate endpoint in the continuous-continuous caseplot MinSurrContCont plot.MinSurrContCont
Plots the expected treatment effect on the true endpoint in a new trial (when both S and T are normally distributed continuous endpoints)plot PredTrialTContCont plot.PredTrialTContCont
Plots the surrogate predictive function (SPF) in the binary-binary settinf.plot SPF BinBin plot.SPF.BinBin
Provides a plots of trial-level surrogacy in the information-theoretic framework based on the output of the 'TrialLevelIT()' functionplot.TrialLevelIT
Provides a plots of trial-level surrogacy in the meta-analytic framework based on the output of the 'TrialLevelMA()' functionplot.TrialLevelMA
Plots trial-level surrogacy in the meta-analytic framework when two survival endpoints are considered.plot.TwoStageSurvSurv
Plots the distribution of prediction error functions in decreasing order of appearance.plot.comb27.BinBin
Plots the distribution of R^2_{HL} either as a density or as function of pi_{10} in the setting where both S and T are binary endpointsplot.Fano.BinBin
Plot the individual causal association (ICA) in the causal-inference single-trial setting in the binary-continuous case.plot.ICA.BinCont
Generates a plot of the estimated treatment effects for the surrogate endpoint versus the estimated treatment effects for the true endpoint for an object fitted with the 'MetaAnalyticSurvBin()' function.plot.MetaAnalyticSurvBin
Generates a plot of the estimated treatment effects for the surrogate endpoint versus the estimated treatment effects for the true endpoint for an object fitted with the 'MetaAnalyticSurvCat()' function.plot.MetaAnalyticSurvCat
Generates a plot of the estimated treatment effects for the surrogate endpoint versus the estimated treatment effects for the true endpoint for an object fitted with the 'MetaAnalyticSurvCont()' function.plot.MetaAnalyticSurvCont
Generates a plot of the estimated treatment effects for the surrogate endpoint versus the estimated treatment effects for the true endpoint for an object fitted with the 'MetaAnalyticSurvSurv()' function.plot.MetaAnalyticSurvSurv
Plots the distribution of either PPE, RPE or R^2_{H} either as a density or as a histogram in the setting where both S and T are binary endpointsplot.PPE.BinBin
Plot the surrogate predictive function (SPF) in the causal-inference single-trial setting in the binary-continuous case.plot.SPF.BinCont
Provides plots of trial- and individual-level surrogacy in the Information-Theoretic framework when both S and T are time-to-event endpointsplot.SurvSurv
Generate 4 by 4 correlation matrices and flag the positive definite onesPos.Def.Matrices
Evaluate a surrogate predictive value based on the minimum probability of a prediction error in the setting where both S and T are binary endpointsPPE.BinBin
Compute the expected treatment effect on the true endpoint in a new trial (when both S and T are normally distributed continuous endpoints)Pred.TrialT.ContCont
Evaluates surrogacy based on the Prentice criteria for continuous endpoints (single-trial setting)Prentice
Prints all the elements of an object fitted with the 'MetaAnalyticSurvBin()' function.print.MetaAnalyticSurvBin
Prints all the elements of an object fitted with the 'MetaAnalyticSurvCat()' function.print.MetaAnalyticSurvCat
Prints all the elements of an object fitted with the 'MetaAnalyticSurvCont()' function.print.MetaAnalyticSurvCont
Prints all the elements of an object fitted with the 'MetaAnalyticSurvSurv()' function.print.MetaAnalyticSurvSurv
Evaluate the individual causal association (ICA) and reduction in probability of a prediction error (RPE) in the setting where both S and T are binary endpointsPROC.BinBin
The prostate dataset with a continuous surrogate.prostate
Generate random vectors with a fixed sumRandVec
Examine restrictions in pi_{f} under different montonicity assumptions for binary S and TRestrictions.BinBin
Sample Unidentifiable Copula Parameterssample_copula_parameters
Sample individual casual treatment effects from given D-vine copula model in binary continuous settingsample_deltas_BinCont
Sample copula data from a given four-dimensional D-vine copulasample_dvine
Data of five clinical trials in schizophreniaSchizo
Data of a clinical trial in Schizophrenia (with binary outcomes).Schizo_Bin
Data of a clinical trial in schizophrenia, with binary and continuous endpointsSchizo_BinCont
Longitudinal PANSS data of five clinical trials in schizophreniaSchizo_PANSS
Perform Sensitivity Analysis for the Individual Causal Association with a Continuous Surrogate and Binary True Endpointsensitivity_analysis_BinCont_copula
Sensitivity analysis for individual causal associationsensitivity_analysis_SurvSurv_copula
Compute Sensitivity Intervalssensitivity_intervals_Dvine
Simulate a dataset that contains counterfactualsSim.Data.Counterfactuals
Simulate a dataset that contains counterfactuals for binary endpointsSim.Data.CounterfactualsBinBin
Simulates a dataset that can be used to assess surrogacy in the multiple-trial settingSim.Data.MTS
Simulates a dataset that can be used to assess surrogacy in the single-trial settingSim.Data.STS
Simulates a dataset that can be used to assess surrogacy in the single trial setting when S and T are binary endpointsSim.Data.STSBinBin
Conducts a surrogacy analysis based on the single-trial meta-analytic frameworkplot.Single.Trial.RE.AA Single.Trial.RE.AA
Evaluate the surrogate predictive function (SPF) in the binary-binary setting (sensitivity-analysis based approach)SPF.BinBin
Evaluate the surrogate predictive function (SPF) in the causal-inference single-trial setting in the binary-continuous caseSPF.BinCont
Bootstrap based on the multivariate normal sampling distributionsummary_level_bootstrap_ICA
Provides a summary of the surrogacy measures for an object fitted with the 'FederatedApproachStage2()' function.summary.FederatedApproachStage2
Provides a summary of the surrogacy measures for an object fitted with the 'MetaAnalyticSurvBin()' function.summary.MetaAnalyticSurvBin
Provides a summary of the surrogacy measures for an object fitted with the 'MetaAnalyticSurvCat()' function.summary.MetaAnalyticSurvCat
Provides a summary of the surrogacy measures for an object fitted with the 'MetaAnalyticSurvCont()' function.summary.MetaAnalyticSurvCont
Provides a summary of the surrogacy measures for an object fitted with the 'MetaAnalyticSurvSurv()' function.summary.MetaAnalyticSurvSurv
Assess surrogacy for two survival endpoints based on information theory and a two-stage approachSurvSurv
Test whether the data are compatible with monotonicity for S and/or T (binary endpoints)Test.Mono
Estimates trial-level surrogacy in the information-theoretic frameworkTrialLevelIT
Estimates trial-level surrogacy in the meta-analytic frameworkTrialLevelMA
Assess trial-level surrogacy for two survival endpoints using a two-stage approachTwoStageSurvSurv
Fit binary-continuous copula submodel with two-step estimatortwostep_BinCont
Fit survival-survival copula submodel with two-step estimatortwostep_SurvSurv
Fits univariate fixed-effect models to assess surrogacy in the meta-analytic multiple-trial setting (continuous-continuous case)UnifixedContCont
Fits univariate mixed-effect models to assess surrogacy in the meta-analytic multiple-trial setting (continuous-continuous case)UnimixedContCont